BDDS R Tutorial; subsetting large
datasets and merging metadata

This is a Bulk Data Download Services (BDDS) tutorial providing a walkthrough on how to
process large CSV files using the R coding language. We selected R for it's popularity, open
source access, relevance to data science and accessibility for beginners. The code only takes
seconds to run (depending on the system) and uses around 150 MB of memory including R's
overhead.

We assume that you have some basic understanding of coding or scripting in order to adapt the
code to your needs, but we believe this tutorial is within the reach of novice coders. It is built to
process any of the BDDS data packages with as few modifications as possible.

Context

We wanted to address users' feedback concerning issues when opening the larger datasets

in Excel e.g. Other Policy-Relevant Indicators (OPRI) containing more than 2.7 million

rows. Figure 1 shows the warning message popping-up when a CSV is partially loaded due to its
size exceeding Excel's limit, in this case, exceeding the maximum number of rows.

Microsoft Excel x

| File not loaded completely.

Show Help > >

Figure 1 excel warning message: file not loaded completely.

The BDDS is meant to be accessed programmatically either with a statistical package (R, STATA,
SAS, SPSS, etc.) or with a coding language. Although it is possible to load it initially in Excel with
some manual workaround, we strongly discourage this practice to prevent human errors.
Moreover, each BDDS package provides data point level metadata, and labels in separate CSV
files. Linking these files with the core datasets requires efficiency and power that goes beyond
Excel's standard capabilities.

Objective

This tutorial fulfils two main objectives. First, to process a large CSV in a programmatic way.
Second, to demonstrate how the country/indicator labels and metadata are linked and merged
to the data.

Specifically, we will process the Other Policy-Relevant Indicators BDDS files, providing a
walkthrough with the following steps:

Read (load) the full CSV file in memory;

Create a subset based on lists of countries, indicators and years;
Merge indicator and country labels to the subset;

Merge metadata to a data subset;

Write the data subset back to CSV.

uhwWwNE

Getting started

Download the R code

Start by downloading the tutorial R code package (the link will start the download).

Download the BDDS data

You will also need the Other Policy-Relevant Indicators (OPRI) data package (available on the
UIS BDDS page under ‘Education’).

Unzip the R code and the data files and take note of the path of the folder where those
documents are saved, it will be required as an input to the code during this walkthrough.

Install the R software

There are many ways to get R, but we recommend the convenience of Anaconda. This software
package includes multiple data science tools, such as R and other Integrated Developer
Environments (IDE) like Jupyter Notebook. For this demonstration, we will use the R Studio IDE
(within Anaconda) for running the code, looking at output tables, etc.

Go to the Anaconda download page and choose a download package for your system at the
bottom of the page.

https://apimgmtstzgjpfeq2u763lag.blob.core.windows.net/content/MediaLibrary/BDDS_Code/BDDS_R.zip
https://apimgmtstzgjpfeq2u763lag.blob.core.windows.net/content/MediaLibrary/bdds/OPRI.zip
https://www.anaconda.com/products/individual

Opening the code

Install Anaconda - Open Anaconda —> Click on the Install button in the R Studio section
(Figure 2, the button will change from "Install" to "Launch") - Launch R Studio after it is
installed

RStudio

1.1.456
A set of integrated tools designed to help
you be more productive with R. Includes R
essentials and notebooks.

Install

Figure 2 anaconda interface's Home page

Within R Studio: Go to File menu (Figure 3) - Click Open file—> Open the BDDS code from its
saved location

€ RStudio

(Eile Edit Code View Plots Session Build Debug Profile T
New File » | |~ Addins ~
New Project...

A A - - — l#########v##a
Reopen with Encoding... hstalled
Recent Files Fpackages()):s
Open Project...

Figure 3 opening a R file in R Studio IDE

This will load the R code in R Studio. Nothing is executed at this point.

Executing the code

In the following section, we will look at each block of code in detail. The code contains most of
the necessary comments to understand how it works but we will go through each steps adding
some colour to those comments.

The code uses two librairies (Figure 4) that include built-in functions for data manipulation.

5 # load libraries
6 Tlibrary(dplyr)
7 library(readr)

Figure 4 librairies for data manipulation

e dplyr focusses on tools for working with data frames
* readr provide a fast and friendly way to read rectangular
data

Specifying work directory and files names

+ # wWork directory #######84888 8RS RERHRRRRRRERBRERBRRRLBRBRERERARERLRRERERERBHSE
#Set work directory
setwd('C:/users/15144 /pownloads /OPRI/")

Figure 5 work directory
Figure 5 shows the work directory where the CSV files are saved on the computer.

Change the work directory to the location on your computer where the BDDS files are saved

This tutorial only uses the following CSV:

OPRI_DATA_NATIONAL.csv - the core dataset with country data;

OPRI_METADATA.csv - the metadata table related to the data points in the core dataset;

OPRI_COUNTRY.csv - the table with country labels and;
OPRI_LABEL.csv - the table with indicator labels.

f Loading CSV in memory ######4#4R4F4FEREGRERFRERERERERRRRURERERRRBRRHREREREH
#Read Csvs while specifying column type
dfNational <- read_csv('OPRI_DATA_NATIONAL.csv', na="", col_types = cols(
INDICATOR_ID = col_character(),
COUNTRY_ID = col_character(),
YEAR = col_integer(),
VALUE = col_double(),
MAGNITUDE col_character(),
QUALIFIER = col_character()
)

dfcountryLabels <- read_csv(OPRI_COUNTRY.csv', na="", col_types
COUNTRY_ID = col_character(),
COUNTRY_NAME_EN = col_character()

)

dfIndicatorLabels <- read_csv('OPRI_LABEL.csv', na="", col_types
INDICATOR_ID = col_character(),
INDICATOR_LABEL_EN = col_character()

))

cols(

cols(

dfMetadata <- read_csv('OPRI_METADATA.csv', na="", col_types = cols(
INDICATOR_ID = col_character(),
COUNTRY_ID = col_character(),
TYPE = col_character(),
METADATA = col_character()
))

Figure 6 loading CSV files to memory

The code in Figure 6 will load the CSV files to memory in a R data frame reproducing the original
file's structure.

Modify the file names in the code when you want to load other datasets

The "OPRI_DATA_NATIONAL.csv" saved in the 'dfNational’ variable will look like the table in
Figure 7.

»

INDICATOR_ID COUNTRY_ID YEAR VALUE MAGNITUDE QUALIFIER

1 10 ABW 2017 0 NA

2 10 ABW 2018 0 NA

3 10 ABW 2019 0 NA

4 10 ABW 2020 0 NA

5 10 AFG 2017 0 NA

6 10 AFG 2018 0 NA

7 10 AFG 2019 0 NA

8 10 AFG 2020 0 NA

9 10 AGO 2017 0 NA VA
10 10 AGO 2018 0 NA
11 10 AGO 2019 0 NA NA
21710 AN 2n2n n NA AA

Figure 7 an example of a dfNational data frame

Run the code from the beginning to the “Load CSV to memory” section (included) by selecting the
lines and then pressing ctrl+enter.

You can now see the CSV loaded in the 'Environment' window (Figure 8) within the R Studio
IDE. Double click on the dfCountryLabels variable and the data frame it contains will pop-up in
a new window.

o 800s or [eory | comectons
5 SourceonSave (O /- #Run | *% $Source - = < [™ ImportDataset + &
Q test Nt [|0 | OPRI - 7 @ Global Environment ~
) 7 Data
! = - Mmh,‘m e w"? S O dfcountryLabels 241 obs. of 2 variables
9~ # work directory . 4 G L A -
10 #set work directory DarindicatorLabels 1063 obs. of 2 variables
11 setwd('C:/users/15144/pownloads/OPRI/") © dfmetadata 112093 obs. of 5 variables
12
13- # Loading CSV in memory FE# 4 O dfNational 2656390 obs. of 6 variables

14 #read csvs while specifying column type

Figure 8 opening a variable containing a data frame in the 'Environment' window

Subsetting the data file

The second step is to extract a subset from a data frame based on lists of countries, years and
indicators.

42 v # Creating subsets of the data #######FFFFHRERFERHFHBERBHRERAREBRARHRERBRERES

43 # 1) Extracting a vectors of sorted unique values for the vear, Country and Indicator variables
44 # Those vectors' values will serve as the default parameters in the following function|

45 allvears <- sort(unique(dfNational[, 'YEAR'])[[1]])

46 recentyears <- tail(allvears, n=4)

47 allcountries <- sort(unique(dfNational[, "COUNTRY_ID 1) [[1]])

48 allindicators <- sort(unique(dfNational[, 'INDICATOR_ID'])[[1]])

Figure 9 extract and sort lists of unique values for years, countries and indicators

The first lines (Figure 9) sort and save lists of the unique values for countries, years and
indicators found in dfNational. These lists will define the default parameters in the function
named subsetData Figure 10.

51 # pata subset function

52 ~ subsetbata <- function(dataset, yearList=recentyears, countryList=allCountries, indicatorList=allIndicators) {
53 # Subsets the data

54 #

55 # Parameters

56 # ——-----—--

57 # dataset : DataFrame

58 # a DataFrame to be subsetted

59 # yearList: a list of int, default is recentyears

60 # a list of years

61 # countryList: a list of str, defaults is allcountries
62 # a list of 3-letter ISO country code

63 # indicatorList: a list of str, default is allIndicators
64 # a list of indicator codes

65 # Returns

66~ # -———---

67 # DataFrame

68 # a DataFrame subsetted by a Tist of years, countries and indicators
69 asubset <- dataset %»>% filter(

70 YEAR %in% yearList,

71 COUNTRY_ID %in% countryList,

72 INDICATOR_ID %in% indicatorList

73)

74 return (asubset)

75 1}

Figure 10 subset function

The subsetData function (Figure 10) takes in four arguments: dataSet, yearList, countryList and
indicatorList. Left at their default parameters, the subset will contain the last four years of data
for all countries and all indicators.

The full dataset OPRI_DATA_NATIONAL.csv starts with more than 2.7 million rows. The default
parameters output a data frame containing around 250K rows providing a subset that fits
within an Excel sheet.

An example will be provided showing how to change these parameters to get a smaller (or
larger) subset. Before running these examples, we will define another function for merging the
metadata to the subset.

Merging the metadata to the data subset

77 # Add metadata to dataset function
78 v addvetadata <- function(datasub, metabatasub, metadataType='Source:Data sources') {

79 # Merges the metadata to the data

80 “

81 # Parameters

82 # —mmmmmeee

83 # datasub: DataFrame

84 # a DataFrame receiving the metadata from another DataFrame

85 # metaDatasub: DataFrame

86 # a pataFrame giving metadata to another DatafFrame

87 # metadataType: str {'Source:Data sources’, 'under Coverage:Students or individuals'}

88 # a string for specifying the type of metadata merged to the dataset (note

89 # that the number of metadata type will vary across datasets and over time)

90 =

91 # Returns

92~ # -

93 # DataFrame

94 # a DataFrame with an extra column of metadata

95 metadatasubByType <- filter(metaDatasub, TYPE == metadataType) %>% #filter metadata on metadata type
96 group_by(YEAR,COUNTRY_ID, INDICATOR_ID, TYPE) %>% #var on which to Group
97 summarise(METADATA=paste(METADATA,collapse="]|")) #var that will be grouped

98 datasubsetwithMeta <- datasub %>% left_join(metadatasubByType, by=c('YEAR', 'COUNTRY_ID', 'INDICATOR_ID'))
99 return (datasubsetwithmeta)

oo 1

Figure 11 merging the metadata function

The addMetadata function (Figure 11) will take a dataset and merge it with its metadata.

The function takes in three arguments: dataSub, metadataSub and metadataType. Left at its
default 3" parameter, the function will add a column holding the data source to the subset.

The metadata is data point specific and the function will try matching a data point with the
same YEAR/COUNTRY_ID/INDICATOR_ID combination within the metadata file.

Any data point can have zero, one or multiple metadata values associated with it. In the OPRI
dataset, there are two types of metadata at the time of writing so a single data point could
have a source or an under coverage entry associated with it. As such, it is important to run this
function multiple time to get all the metadata types required for your needs. This function
could also be modified to merge all metadata in one run.

Furthermore, a single datapoint can have multiple entries for the same type of metadata. This is
also taken into account and if such a case occurs, the function will combine the entries within a
single cell and each entries will be separated by the "|" symbol..

Run the code sections from "Creating subsets of the data" to "Merging metadata and data subsets"
(included) by selecting the lines and then pressing 'ctrl+enter'. This will save the new functions to
memory.

Example subsetting and merging the metadata to the
subset

So far, we have constructed two functions that allow to subset the core data set and then
match the metadata to each data point of the subset.

The next blocks of code provide examples running these two functions.

Example 1, running the subsetData function with the default parameters

103 # Example 1: Subsetting using the function's default parameters

104 # Data subset

105 defaultbatasubset = subsetbata(dfNational)

106

107 # Metadata subset

108 defaultMetadatasubset = subsetbData(dfMetadata)

109

110 # Merging metadata with data subset using default metadata type

111 defaultsubsetwithSource = addvetadata(defaultbatasubset, defaultMetadataSubset)

Figure 12 executing the subset and metadata functions using the default parameters

In this example (Figure 12), we only need to specify the dataset to be subsetted since we will
otherwise run the subsetData function on its default parameters. This means we will extract
the last 4 years of data, all indicators and all countries for both the core data set and the
metadata set.

Next, we use the addMetadata function specifying the data subset and the metadata subset as
the first two parameters. For the purpose of this example, we do not specify the third
parameter since we will merge the data with the default metadata type, the source of the data.

RUN "Example 1" (Figure 12) by selecting the lines and then pressing 'ctrl+enter’.

This will save the data frames to variables (defaultDataSubset, defaultMetadataSubset,
defaultSubsetWithSource) which can be visualized in the 'Environment' window.

Example 2, running the subsetData function with custom parameters

113 # example 2:# Subsetting by specifying all the parameters into a list

114 # pefining the list of year, country and indicator of interest

115 yearssSubset <- ¢(2012, 2014, 2015, 2017)

116 countrysubset <- c('ARG', 'KwT', 'Swe', 'ZweE')

117 indicsubset <- C("NART.1.Ql.F.LPIA', 'MYS.1T8.AG25T99', 'GER.1', 'SAP.1’', 'AIR.1l.Glast"’)
118

119 # pata subset

120 mybpatasubset = subsetbpata(dfNational, yearssubset, countrysubset, indicsSubset)

121

122 # Metadata subset

123 myMetadatasubset = subsetData(dfMetadata, yearssSubset, countrysubset, indicSubset)

124

125 # Merging metadata with data subset using specified metadata type

126 mysubsetwithundercov = addMetadata(myDatasubset, myMmetadatasubset, ‘uUnder Coverage:students or individuals')
127

128 mysSubsetwith_undercov_source = addvetadata(mysSubsetwithundercov, myMetadatasubset)

Figure 13 executing the subset and metadata functions using custom parameters

Figure 13 shows how the function works with all the parameters and the parameters' inputs
explicitly stated.

First, custom lists of years, countries and indicators are specified and saved in variables
(yearsSubset, countrySubset and indicSubset). These variables are then passed in
the subsetData function as the second, third and fourth parameters respectively.

Once the dataset and the metadata set have been subsetted, the code merges the metadata
and data subsets a first time with the addMetadata function. The third parameters is a string
specifying ‘Under Coverage: Students or individuals’ as the type of metadata merged to the
subset.

To further the example, the addMetadata is then used a second time to add the default
metadata type (data source).

The final output is a subset with extra columns with both the source and the under-coverage
metadata.

Run "Example 2" (Figure 13) section by selecting the lines and then pressing 'ctrl+enter'.

This will save the data frames to variables.

Adding labels

131 # Add label to dataset function
132 ~ addLabels <- function(datasetNoLabel, labelset, keyvariable) {
133 # Adds Tabels to a dataset

134 # Adds an additional column with the country or indicators name.
135 #

136 # Parameters

137+ # -

138 # datasSetNoLabel: DataFrame

139 # the pataFrame containing the data

140 # labelset: DataFrame

141 # the pataFrame containing the labels

142 # keyvariable: str {'INDICATOR_ID', 'COUNTRY_ID'}
143 # a string specifying the key variable for the merge
144 #

145 # Returns

146~ # -——————-

147 # DataFrame

148 # a DataFrame with extra columns for labels

149 datasetwithLabels <- datasetNoLabel %>% left_join(labelset, by=keyvariable)
150 return (datasetwithrLabels)
5T }

Figure 14 adding labels function with an example

Before converting back the subset with metadata to CSV, the label for the country and indicator
can be attached to the subset. This function will merge the labels from the label dataset to the
subset.

The function (Figure 14) takes in three arguments and has no default parameters. The first and
second arguments are for specifying the data frames for the subset and label tables. The third
argument indicates the key on which to merge the data frames.

To get both countries and indicators labels you will need to run the function twice.
The output is a dataset with extra columns with those labels.

Run the "Adding labels" section (function and example) by selecting the lines and then pressing
‘ctrl+enter’.

This will save the function in memory and run the examples for merging labels.

The function is run twice to include both country and indicator labels. You can now visualize the
data frame with labels in the 'Environment' window.

Exporting subset to CSV

166 § Export subset to CSV $$§S53535383 5030350012000 0 0002202002020 040030303024824¢
167 write.csv (mySubsetWith Meta alllLabels, na="", "R tutorial test.csv")

Figure 15 exporting the final subset to CSV

Lastly, we export the subset back to CSV (Figure 15). Note that R processes missing values as an
R object named NA. In order not to confuse it with the UIS dataset string "NA" (used for not
applicable) we specify the R NA object as an empty string "" when writing the subset back to
CSV.

Modify the file name in the code to a name of your choice and run the last line of code to export
the final subset to CSV.

You now have a subset with the metadata and labels included. The subset is saved in the work
directory specified at the beginning of the code.

