BDDS Python Tutorial;
subsetting large datasets and
merging metadata

This is a Bulk Data Download Services (BDDS) tutorial providing a walkthrough on how to
process large CSV files using the Python coding language (with the Pandas module). We
selected Python for it's popularity, open source access, relevance to data science and
accessibility for beginners. The Pandas module was selected because it is fast and has low
memory usage. The code only takes seconds to run (depending on the system) and uses
around 800 MB of memory including Python's overhead (500MB).

We assume that you have some basic understanding of coding or scripting in order to adapt the
code to your needs, but we believe this tutorial is within the reach of novice coders. It is built to
process any of the BDDS data packages with as few modifications as possible.

Context

We wanted to address users' feedback concerning issues when opening the larger datasets

in Excel e.g. Other Policy-Relevant Indicators (OPRI) containing more than 2.7 million

rows. Figure 1 shows the warning message popping-up when a CSV is partially loaded due to its
size exceeding Excel's limit, in this case, exceeding the maximum number of rows.

Microsoft Excel X

| File not loaded completely.

Show Help > >

Figure 1 excel warning message: file not loaded completely.

The BDDS is meant to be accessed programmatically either with a statistical package (R, STATA,
SAS, SPSS, etc.) or with a coding language. Although it is possible to load it initially in Excel with
some manual workaround, we strongly discourage this practice to prevent human errors.
Moreover, each BDDS package provides data point level metadata, and labels in separate CSV

files. Linking these files with the core datasets requires efficiency and power that goes beyond
Excel's standard capabilities.

Objective

This tutorial fulfils two main objectives. First, to process a large CSV in a programmatic way.
Second, to demonstrate how the country/indicator labels and metadata are linked and merged
to the data.

Specifically, we will process the Other Policy-Relevant Indicators BDDS files using
the Pandas module in Python, providing a walkthrough with the following steps:

Read (load) the full CSV file in memory;

Create a subset based on lists of countries, indicators and years;

Merge indicator and country labels to the subset (using Pandas module);
Merge metadata to a data subset;

Write the data subset back to CSV.

AREE o

Getting started

Download the Python code

Start by downloading the tutorial Python code package (the link will start the download).

Download the BDDS data

You will also need the Other Policy-Relevant Indicators (OPRI) data package (available on the
UIS BDDS page under ‘Education’).

Unzip the Python code and the data files and take note of the path of the folder where those
documents are saved, it will be required as an input to the code during this walkthrough.

Install the Python software

There are many ways to get Python, but we recommend the convenience of Anaconda. This
software package includes multiple data science tools, such as Python and dedicated Python
Integrated Developer Environments (IDE) like Spyder and Jupyter Notebook. For this
demonstration, we will use the Spyder IDE (within Anaconda) for running the code, looking at
output tables, etc.

Go to the Anaconda download page and choose a download package for your system at the
bottom of the page.

https://apimgmtstzgjpfeq2u763lag.blob.core.windows.net/content/MediaLibrary/BDDS_Code/BDDS_Python.zip
https://apimgmtstzgjpfeq2u763lag.blob.core.windows.net/content/MediaLibrary/bdds/OPRI.zip
https://www.anaconda.com/products/individual

Opening the code

Install Anaconda — Open Anaconda — Click on the Install button in the Spyder section (Figure
2, the button will change from "Install" to "Launch") — Launch Spyder after it is installed

{D ANACONDA NAVIGATOR

A Home Applications on ! base (root) «| channels

‘ Environments

J A i i
N Learning CMD.exe Prompt Glueviz Ju

0.1.1 0.15.2
Run a cmd.exe terminal with your current Multidimensional data visualization across An extensible en
environment from Navigator activated files. Explore relationships within and among and reproducible
TS ; related datasets. Jupyter Notet

aan Community
<] el
_{
IP'y X

Qt Console Spyder f

473 213
PyQt GUI that supports inline figures, proper Scientific PYthon Development Aset of integrat:
multiline editing with syntax highlighting, EnviRonment. Powerful Python IDE with you be more pro
graphical calltips, and more. advanced editing, interactive testing, essential

debugging and introspection features

Figure 2 anaconda interface's Home page

Within Spyder: Go to File menu (Figure 3) — Click Open...— Open the BDDS code from its saved
location

& Spyder (Python 3.7)

File Edit Search Source Run Debug Coi

3 New file.. Ctrl+N
50 : Ctrl+O

Ctrl+Shift+T

Ctrl+Shi

Ctrl+P

Ctrl+Alt+P
C' Restart Alt+Shift=R

Quit Ctr+Q

Figure 3 opening a Python file in Spyder IDE

This will load the Python code in Spyder. Nothing is executed at this point.

Executing the code

In the following section, we will look at each block of code in detail. The code contains most of
the necessary comments to understand how it works but we will go through each steps adding
some colour to those comments.

The code uses two modules (Figure 4) that include built-in functions for data manipulation.

pandas as pd

numpy np

Figure 4 modules for data manipulation

e Pandas is a fast, powerful, flexible and easy to use open-source data analysis and

manipulation tool with Python
¢ Numpy a fundamental package for scientific computing with Python

Specifying file path and files names

#FHH# 1NDL ; & T iLe : e o 0 e 2 e 2 e A 2 S e S S e s e o e b

fy the path of the fold
'C:\\Users\\15144\ \Down

ec

pafﬁ-z

Figure 5 file path and loading CSV data in memory

Figure 5 shows the path where the CSV files are saved on the computer.
Change the path to the location on your computer where the BDDS files are saved

This tutorial only uses the following CSV:

o OPRI_DATA_NATIONAL.csv - the core dataset with country data;

e OPRI_METADATA.csv - the metadata table related to the data points in the core dataset;
e OPRI_COUNTRY.csv - the table with country labels and;

e OPRI_LABEL.csv - the table with indicator labels.

eduDataSet = pd. réad_csv(path+'OPRI_DATA_NATIONAL.csv')
metadataSet = pd.read_csv(path + 'OPRI_METADATA.csv')

countryLabels = pd.read_csv(path+'OPRI_COUNTRY.csv')
edulLabels = pd.read_csv(path+'OPRI_LABEL.csv')

Figure 6 loading CSV files to memory

The code in Figure 6 will load the CSV files to memory in a Pandas DataFrame reproducing the
original file's structure.

Modify the file names in the code when you want to load other datasets

The "OPRI_DATA_NATIONAL.csv" saved in the eduDataSet variable will look like the table in
Figure 7.

Index INDICATOR_ID COUNTRY_ID YEAR VALUE MAGNITUDE QUALIFIER

26715 yadult.prof.. SWE 2012 0.892 nan nan

93940 CR.1 ZWE 2015 88.2131 nan nan
436759 EA.1t8.Ag25.. ZWE 2012 80.8751

482213 EA.1t8.Ag25.. KWT 2012 64.4829

783794 EA.1t8.Ag25.. SWE 2015 100

1032867 EA.1t8.Ag25.. SWE 2017 100

1422218 EA.6t8.Ag25.. ZWE 2012 339972

1612806 EA.6t8.Ag25.. KWT 2017 10.6672

QRIAA() A_OBTR_AQD A
Figure 7 an example of a Pandas' DataFrame

Run the code from the beginning to the “Load CSV to memory” section (included) by
selecting the lines and then pressing FO.

You can now see the CSV loaded in the Variable explorer tab (Figure 8) within the Spyder IDE.
Double click on the countryLabels variable and the DataFrame it contains will pop-up in a new
window.

Note that double-clicking on large DataFrame will take a long time to load e.g.
the eduDataSet containing 2.7 million rows.

OUNTRY_NAME_EN
COUNTRY_ID, YEAR,

Created on'Wed Jun 23 2020
Last update on Thu Feb 25 2021

_1D, COUNTRY_ID, YEAR,

This file provides a full walkthrough using Pandas for:
-loading the CSV files in memory
-creating a subset based on lists of countries, indicators and years
-adding metadata to the subset
4-adding indicator and country labels to the subset
-returning the subset file to CSV format

Help Vaniable explorar Plots Fles

pandas pd

Subsetting the data file

The second step is to extract a subset from a DataFrame based on lists of countries, years and
indicators.

Extracting a Llist of sorted unique values for the Year, Countries and Indicators
that will serve as the default parameters in the following function

allyears = np.sort(eduDataSet["YEAR"].unique()

recentYears = allYears[-4:] h 1

allCountries = np.sort(eduDataSet[“"COUNTRY ID"].unique())

eduDataSet[”INDICATORfID“]=eduDataSet["INDICATORfID”].astYpe(str)
allIndicators = np.sort(eduDataSet["INDICATOR ID"].unique())

Figure 9 extract and sort lists of unique values for years, countries and indicators

The first lines (Figure 9) sort and save lists of the unique values for countries, years and
indicators found in eduDataset. These lists will define the default parameters in the function
named subsetData Figure 10.

- subsetData(dataSet, yearList=recentYears,\
countrylList=allCountries, indicatorList=allIndicators):
"""Subsets the data

Parameters

dataSet : DataFrame
a DataFrame to be subsetted

yearlList: a List of int, default is recentYears
a List of years

countrylList: a List of str, defaults is allCountries
a List of 3-letter ISO country code

indicatorList: a Llist of str, default is allIndicators
a List of indicator codes

Returns

DataFrame
a DataFrame subsetted by a List of years, countries and indicators

mwon

aSubset = dataSet[(dataSet['YEAR'].isin(yearList)) &\
(dataSet['COUNTRY_ID'].isin(countryList)) &\
(dataSet["INDICATOR_ID'].isin(indicatorList))]

n aSubset

Figure 10 subset function

The subsetData function (Figure 10) takes in four arguments: dataSet, yearList, countryList and
indicatorList. Left at their default parameters, the subset will contain the last four years of data
for all countries and all indicators.

The full dataset OPRI_DATA_NATIONAL.csv starts with more than 2.7 million rows. The default
parameters output a DataFrame containing around 250K rows providing a subset that fits
within an Excel sheet.

Both the core data and the metadata should be subsetted to speed up the merging process
although the speed gain will be marginal on smaller subsets.

An example will be provided showing how to change these parameters to get a smaller (or
larger) subset. Before running these examples, we will define another function for merging the
metadata to the subset.

Merging the metadata to the data subset

addmatédafa(dataSub, metaDataSub, metadataType='Source:Data sources'):
"""Merges the metadata to the data

Parameters

dataSub: DataFrame
a DataFrame receving the metadata from another DataFrame
metaDataSub: DataFrame
a DataFrame giving metadata to another DataFrame
metadataType: |88k { 'Source:Data sources’, 'Under Coverage:Students or individuals'}
a string for specifying the type of metadata merged to the dataset (note
that the number of metadata type will vary across datasets and over time)

Returns

DataFrame
a DataFrame with an extra column of metadata

metadataSubByType = metaDataSub[metaDataSub['TYPE'] == metadataType]

metaDataSubJoined=metadataSubByType.groupby([‘YEAR", ‘COUNTRY ID', 'INDICATOR ID', 'TYPE'])\
['"METADATA"].apply(' | '.join).reset_index()
dataSubsetwithMeta = pd.merge(dataSub, metaDataSublJoined, how ='left’,\
on = ['YEAR', 'COUNTRY_ID', 'INDICATOR ID'])
dataSubsetwWithMeta

Figure 11 merging the metadata function
The addMetadata function (Figure 11) will take a dataset and merge it with its metadata.

The function takes in three arguments: dataSub, metadataSub and metadataType. Left at its
default 3¢ parameter, the function will add a column holding the data source to the subset.

The metadata is data point specific and the function will try matching a data point with the
same YEAR/COUNTRY_ID/INDICATOR_ID combination within the metadata file.

Any data point can have zero, one or multiple metadata values associated with it. In the OPRI
dataset, there are two types of metadata at the time of writing so a single data point could have
a source or an under coverage entry associated with it. As such, it is important to run this
function multiple time to get all the metadata types required for your needs. This function
could also be modified to merge all metadata in one run.

Furthermore, a single datapoint could have multiple entries for the same type of metadata. This
is also taken into account and when such a case occurs, the function will combine the entries
within a single cell and each entries will be separated by the "|" symbol.

Run the code sections from "Creating subsets of the data" to "Merging metadata and
data subsets" (included) by selecting the lines and then pressing F9. This will save the
new functions to memory.

Example subsetting and merging the metadata
to the subset

So far, we have constructed two functions that allow to subset the core data set and then
match the metadata to each data point of the subset.

The next blocks of code provide examples running these two functions.

Example 1, running the subsetData function with the default
parameters

"""Example 1
Subsetting by using the default parameters i.e. last 4 years, all countries and all indicators

defaultDataSubset = subsetData(eduDataSet)

defaultMetadataSubset = subsetData(metadataSet)

defaultSubsetWithSource = addMetadata(defaultDataSubset, metadataSet)

Figure 12 executing the subset and metadata functions using the default parameters

In this example (Figure 12), we only need to specify the dataset to be subsetted since we will
otherwise run the subsetData function on its default parameters. This means we will extract
the last 4 years of data, all indicators and all countries for both the core data set and the
metadata set.

Next, we use the addMetadata function specifying the data subset and the metadata subset as
the first two parameters. For the purpose of this example, we do not specify the third
parameter since we will merge the data with the default metadata type, the source of the data.

RUN "Example 1" (Figure 12) by selecting the lines and then pressing F9.

This will save the DataFrames to variables (defaultDataSubset, defaultMetadataSubset,
defaultSubsetWithSource) which can be visualized in the variable explorer tab.

Example 2, running the subsetData function with custom
parameters

“""Example 2:
Subsetting by specifying all the parameters into a List

yearsSubset = [2012, 2014, 2015, 2017]

countrySubset = np.array([‘ARG’, ‘KWT', ‘SWE', 'ZWE'])

indicSubset = np.array([‘MYS.1t8.Ag25t99', 'FOSGP.5t8.F400', 'NART.1.Q1.F.LPIA',\
"MENF.5t8'])

myDataSubset = subsetData(eduDataSet, yearsSubset, countrySubset, indicSubset)

myMetadataSubset = subsetData(metadataSet, yearsSubset, countrySubset, indicSubset)

mySubsetWithUnderCov = addMetadata(myDataSubset, myMetadataSubset,\
‘Under Coverage:Students or individuals')

mySubsetWith UnderCov_Source = addMetadata(mySubsetWithunderCov, myMetadataSubset)

Figure 13 executing the subset and metadata functions using custom parameters

Figure 13 shows how the function works with all the parameters and the parameters' inputs
explicitly stated.

First, custom lists of years, countries and indicators are specified and saved in variables
(yearsSubset, countrySubset and indicSubset). These variables are then passed in
the subsetData function as the second, third and fourth parameters respectively.

Once the dataset and the metadata set have been subsetted, the code merges the metadata
and data subsets a first time with the addMetadata function. The third parameters is a string
specifying ‘Under Coverage: Students or individuals’ as the type of metadata merged to the
subset.

To further the example, the addMetadata is then used a second time to add the default
metadata type (data source).

The final output is a subset with extra columns with both the source and the under-coverage
metadata.

Run "Example 2" (Figure 13) section by selecting the lines and then pressing FO.

This will save the DataFrames to variables.

Adding labels

jef addLabeI;(dataSetNoLabel, labelSet, keyVariable):
"""Adds Labels to a dataset
Adds an additional column with the country or indicators name.

Parameters

dataSetNoLabel: DataFrame
the DataFrame containing the data
LabelSet: DataFrame
the DataFrame containing the Labels
keyVariable: str {'INDICATOR_ID', 'COUNTRY_ID'}
a string specifying the key variable for the merge

Returns

DataFrame
a DataFrame with extra columns for Labels

dataSetWithLabels = pd.merge(dataSetNoLabel, labelSet, how='left’, on=[keyVariable])
~eturn dataSetWithLabels

Figure 14 adding labels function with an example

Before converting back the subset with metadata to CSV, the label for the country and indicator
can be attached to the subset. This function will merge the labels from the label dataset to the
subset.

The function (Figure 14) takes in three arguments and has no default parameters. The first and
second arguments are for specifying the DataFrames for the subset and label tables. The third
argument indicates the key on which to merge the DataFrames.

To get both countries and indicators labels you will need to run the function twice.

The output is a dataset with extra columns with those labels.

Run the "Adding labels" section (function and example) by selecting the lines and then
pressing FO.

This will save the function in memory and run the examples for merging labels.

The function is run twice to include both country and indicator labels. You can now visualize the
DataFrame with labels in the Variable Explorer.

Exporting subset to CSV

mySubsetWith_Meta_alllabels.to_csv(path+ 'PythonTutorial.csv’

Figure 15 exporting the final subset to CSV

Lastly, we export the subset back to CSV (Figure 15). There are many options for what we could
do with the subset but, for the sake of this tutorial, we assume that the user will want to do
some analysis in Excel.

Modify the file name in the code to a name of your choice and run the last line of code
to export the final subset to CSV.

You now have a subset with the metadata and labels included. The subset is saved in the folder
specified in the "Input files" section at the beginning of the code.

